
Toward Active, Extensible, Networked Documents:

Multivalent Architecture and Applications
Thomas A. Phelps and Robert Wilensky

University of California, Berkeley

{phelps, wilensky}@CS.Berkeley. EDU

Abstract

Rich varieties of online digital documents are possible,
documents which do not merely imitate the capabilities of other
media. A true digital document provides an interface to potentially
complex content. Since this content is infinitely varied and
specialized, we must provide means to interact with it in arbitrarily
specialized ways. Furthermore, since relevant content may be

found in distinct documents, we must draw from multiple sources,
yet provide a coherent presentation to the user Finally, it is

essential to be able to conveniently author new content, dejine new
means of manipulation, and seamlessly mesh both with existing
materials.

Wepresent a new general paradigm that regards documents with

complex content as “multivalent documents”, comprising multiple
“layers” of distinct but intimately related content. Small,

dynamically-loaded program objects, or “behaviors”, activate the
content and work in concert with each other and layers of content
to support arbitrarily specialized document types. Behaviors bind
together the disparate pieces of a multivalent document to present
the user with a single untjied conceptual document. As implemented
in Java in the context of the World Wide Web, multivalent
documents in effect create a customizable virtual Web, drawing
together diverse content and functionality into coherent document-
based inte~aces to content.

Examples of the diverse jimctionality in multivalent documents
include: “OCR select and paste”, where the user describes a
geometric region on the scanned image of a printed page and the
corresponding text characters are copied out; video subtitling,
which aligns a video clip with the script and language translations
so that, e.g., the playing video can be presented simultaneously in

multiple languages, and the video can be searrhed with text-based
techniques; geographic information system (GIS) visualizations
that compose several types of data from multiple datasets; and
distributed user annotations that augment and may transform the
Content of other documents.

In general, a document management infrastructure built around
a multivalent perspective can provide an extensible, networked
system that supports incremental addition of content, incremental
addition of interaction with the user and with other components,
reuse of content across behaviors, reuse of behaviors across types
of documents, and eficient use of network bandwidth. Multivalent

The work reported here was supported in part by National Science

Foundation grant IRI-9411334 as part of the NSF/NASA/ARPA Digital

Library Initiative.

Permission @“make digitalltumd copies of all or part of dds material for
personsl or classroom use is granted without fee provided that the copies
are not made or dbtributed for profit or commercial advantage, the copy-
right notice, the titte of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
tu repubtish, to post on servers or to radiatribute to tiats, requires specific
permission andlor fee.
DL’96, Bethesda MD USA
@199fj ACM 0+97gl_83&4i9(j10’j. .$3,50

documents exploit digital technology to enable new, more
sophisticated document interaction.

1. Introduction

“Multivalent Documents” is a new paradigm for the
organization of complex digital document content and
functionality. The multivalent view of a document contrasts with
monolithic data formats that attempt to encompass all possible
content types of the document in a single, complicated
specification, and provide for interaction with them with
concomitant complicated editors, often of limited extensibility; this
meansthat, especially for specialized documents, the system can be
simultaneously overwhelming and lacklng. In contrast, the
multivalent approach ‘<slices” a document into layers of more
uniform content, to which additional layers maybe added at a later
time at equal status. Functionality is provided by relatively
lightweight, dynamically-loaded program-objects, called
“behaviors”, that manipulate the content. Behaviors may
communicate with multiple layers and other behaviors, and new
behaviors can be added subsequently at equal status. Layers and
behaviors are described in a typing system like that found in many
programming languages, and all such pieces relevant to a particular
document are dynamically composed via a “type graph”.

In conceiving of documents as interacting layers of content and

functional behaviors that unite to present a single conceptual
document, our paradigm introduces new capabilities and benefits.
By representing a document as multiple components, others besides
the original document’s author can add additional content and
behavior at a later time, even introducing technological innovations
that were unknown during the preparation of the initial materials.
These additions can be made locally, without special cooperation of

the server of the base document. By keeping the pieces of content
simple, the behaviors that manipulate them are relatively

straightforward to defincx the components are also more easily
reusable, By storing the content in distinct pieces, only those
necessary to support the requested interaction need be shipped over

the network, thus conserving bandwidth.

The general paradigm of multivalent documents is described at
length elsewhere [Phe196]. In this paper we describe a series of
applications of the multivalent framework in order to illuminate its
breadth of application and richness of functionality. We then
provide a description of the multivalent architecture. This
architecture is a networked model of digital documents that
operates on top of a World Wide Web (WWW) [Bem92] augmented
with protocols that allow more sophisticated structuring. The
loosely coupled nature of the architecture introduces issues which
are considered thereafter. We conclude with a look at related work
and a statement of current status and future plans.

100

-7*.l&.7 r-- .-. ~ nmhw=amw , ------ w8-.--#- - w- %+-, --- -, ,

“+StJofthiRiWY~”o”,o .:.. .. “..”.. -....m”..”... FXj&&@}tS~ktitit’. ‘“..n~”.:.”

“TM!! ~iti~” ““.”.\::: :;.”: :.::””-.:..: “:: . .Hil 12cdMA&lei$&c&.:,

‘Ll:i: Tllrri@cn GallXlmtibll” :.. “..’ “ “ .. “.”:.‘.” “. :’.: “u-s. DrmWrmntM&mki.cF

Figure 1: This is a scanned image of a printed page, which is the initial digital capture formal for most documents

in-Berkeley’s Digital Library P~oject, In many-ways, the user can work w~th the image of the page as if it were a word

processing document. The prototype, which is implemented in Java, refers to a layer of geometrically-positioned
characters to provide “select and paste” functionality (of the corresponding OCR or alternative text), hyperlinks,
definitions dynamically served over the network, and searching in a WWW client. In the figure above, the shaded region
has been selected, and a search has yielded the boxed words.

2. Applications of Multivalent Documents

2.1 Prototypes on Scanned Page Images

As a very simple example of a multivalent document, consider
documents that began their lives as scanned page images. In the UC
Berkeley Digital Library Project [Wile96, Wile95] (http://
elib.cs.berkeley. edu), we have 100,000 pages of such documents
from the California Department of Water Resources. It is
straightforward to run optical character recognition (OCR] on such
a collection and hence make the documents available for access by
full-text search, and we have done so. The page images,, though,
remain inert pictures of text, with little functionality; cme must

move back and forth between images and OCR to make selections

or perform searches.

Yet the scholar may prefer to work with the page images
because, in general, it is tbe only digital representation that
maintains the full information content of the original, including
illustrations, layout, and uncommon markings (as in musical or
mathematical notation). This is vitally important for historically
significant documents such as hand-written manuscripts,
illuminated books, and fine press materials, where the typography
materially contributes to the value of the work. Even were the OCR
to be perfect, translations into other digital representations
inevitably lose information. And it is difficult to predict what needs
preserving; at the extreme, it is possible that in the course of time
that even the worm holes become significant, as a variant
interpolation of the text eaten out may yield a different translation
snd, perhaps, a new interpretation.

In many other ways, however, scanned page images cari be seen
as the worst case of digital document formats. Starting with array of
pixels, we must construct the content of the document, information
that is directly available in other formats. However, the general

multivalent document model has nothing to do with images. Indeed,
the multivalent framework can be usefully applied to other

document formats. In case of SGML, for instance, the user will still
want the higher-level functionality-adding annotations, sorting
tables—while the implementor gains the significant advantages of
extensive markup and control of text presentation. From the
multivalent perspective, scanned page images, like PostScript or
TeX’s formatted DVI files, simply fix the presentation or
appearance. With suitable interfaces to manipulate the presentation,
higher-order functionality can be reused across source formats.
(Application of the model to SGML or HTML is an area of current
research.)

Consider now our prototype multivalent document
implementation. FQtrre 1 dkplays the image of a seamed page
(with telltale page skew). Underlying this image layer are two more
layers: the corresponding ASCII characters and their geometric
positions on the image (both generated automatically). A program
behavior allows the user to select regions of the image and
subsequently paste the corresponchg OCR into another document.
In addition, users can search in the image as if it were a document
in a word processor. In this case, the user’s query is matched against
the underlying OCR; hits are then mapped back into the
corresponding geometric regions in the image, where they are given
a yellow background. Although this is a relatively simple image,
the same techniques would work for text labels embedded in maps
and for handwritten text.

Additional information layers yield more sophisticated
interactions for variations of select and paste. In the case of
mathematical equations layers, one could manually prepare various
encodings of the notation-TeX markup, PostScript, Mathematical

code—and make these available to the user, who could choose to
extract the representation most appropriate to the task at hand.
Bibliography entries could be stored similarly, but in an abstract

101

Gnws Std~iJ,?#

<Tap~~iIy (%-m S&.diw
Fllr:m.u 4Acw-jZwj fAcrr$j $Mjlr.vj

... ...

Iww.dpe Lam 22,EQB

Frenc$umn bt$m 433,500 1,& ;
LakPWwi$ 4M*W3 4,ilm
Laks Ckwilk W.W,fm fJ3,$# 1:;
Th@’rMEkl For@?My 11,7(J3 Em 10

Gwx SWfi/N
<;upv~ify S.h$}rfliw

.........................!.!$!.!...?!.?.??.!!!!.z!?!!!...!

form amenable to mechanical parsing (perhaps taken directly from
a BibTeX database); in thk case, a behavior could automatically
translate the information into other formats such as Refer or

EndNote.

Figure 2 shows another multivalent prototype implementation,
as before and after images of a table manipulation. Of course, an
author must choose a particular ordering before committing a table
to print. In an online multivalent framework, the description of the
table’s rows, columns, and cell contents can be supplied as semantic
layers. In this way, we can manipulate the table interactively. The
prototype uses advanced document analysis techniques, developed
in the project, that derive the supporting layer information. Now, in
response to, say, a mouse click on a given column heading, the

prototype sorts the table image by that column and displays the
results by rearranging pixels in the page imag~ columns are typed
so that numbers are sorted numerically, everything else
alphabetically. One could consider adding other functionality, such
as summing rows or columns, or even placing the table in a general

spreadsheet behavior. Fortunately, the multivalent document model
allows incremental addition of such behaviors even after initiat
authoring.

In the multivalent model, sources of document functionality
need not be limited to the browser and the server from which it
came. We envision legions of networked document services, and
have incorporated two in our prototype. The first is a converter
located at Xerox PARC that takes the output of Xerox’s ScanWorX
OCR software (XDOC format) and returns word bounding boxes,
thus establishing the correspondence between image and text. The
prototype calls this service on the fly for each page.

The other distributed document service takes a chosen word,
sends it to Encyclopedia Britannica’s Web site to be defined, then
filters the returned HTML and presents it to the user. On the
following page, Figure 3 depicts this for the word “precipitation”.

Figure 3 also illustrates hyperlinks, with links sources in both
text flow and map.

2.2 More Complex Instances

Although a multivalent approach can be taken for simple
documents, it is most valuable when applied to complex digital
documents, By “complex document” we mean documents that

Figure 2a This is a table image from
a scanned document. A multivalent
framework may associate structural
information such as a description of
the rows and columns of the table,
as well as the ASCII text in each cell.

Figure 2b: With the content
available in a multivalent document
decomposition, a table behavior
can respond to, say, a mouse click
on the “Surface Area” heading
by sorting the table by that column
and displaying the results by
rearranging the pixels of the image.

contain a large number of varied types of information and therefore
could benefit from sophisticated interactions with users. An

example of a complex multivalent document that incorporates a
dynamic medium is subtitled video, which aligns a video clip with
the script and language translations. The playing video can be
presented simultaneously in multiple languages without a
heavyweight copy of the video stream for each language, and also
the video can be searched with text-based techniques,

2.2.1 Geographic Information Systems

Given the Digital Library Project’s focus on environmental
information, an area of particular interest to us is geographic
information systems (GIS’S). GIS’S already regard their content as
layers, in which some geographic coordinate framework is overlaid
with different kinds of information, such as representations of the

shape of landmasses and water bodies, political borders, highways,
the placement of important structures, and measurement data of
various kinds.

Current practice in the GIS world is to construct distinct systems
for GIS content, e.g., ArcView. Indeed, our project has used such a
stand-alone client, called Napa [Brow95], which visualizes
different types of geographic coverages stored in a data base. Like
many GIS systems, Napa visually positions users at an altitude and
provides a view of the earth from that latitude. The user can then
pan and zoom. The system can be easily configured so that each of
the various data sets are displayed only at certain altitudes. Thus,
from 100 miles up, there is no point in visualizing bridges and
roads, but one would want to see these as one gets just a short
dktance above the ground. In addition, the user can easily turn off
and on the display of individual data sets. As the user pans and
zooms, the Napa client issues queries to the database to retrieve any
portions of the visualized data sets that are needed to fill out the
visible geographic region of the display. Some of the data sets are
visualized directly, e.g., a county boundary is usually a polygon
drawn on the screen. Others, such as aerial or terrestrial
photographs, are displayed as icons; clicking upon them causes the
designated object to be displayed.

From a multivalent perspective, it is possible to provide similar
functionality without a special purpose previewer. For example,
consider a (traditional) document in which a map presents a static
view of some set of geographic information, In this instance,

102

various sources of data are leveled into a bit-mapped

representation. However, in the multivalent approach, we would

retain the individual layered structure that compose into the visual

depiction. The particular presentation simply requires previewer
capabilities for the various levels of structure, plus rules of

composition-exactly what the multivalent document
infrastructure provides. Given these capabilities, it would be
possible to attach a map to a document with no information content
and introduce new means of manipulating it, or override content or

behavior with improved or customized versions.

2.2.2 User Annotations and Collaboration

User annotations is the other main area of present interest in the
project. User annotations are theoretically no different than adding

more layers to the existing model. However, some elaborations of a
document are so common as to call for special authoring support. In
the multivalent model it is straightforward to add functionality
commonly found in annotation packages, such as the ability to draw
text and geometric shapes on the document image and to attach
scrolling text boxes to points in other semantic layers. But working
in a multivalent framework offers other benefits. Consider the
example of the Talmud. The text corresponding to the Jewish law
occupies only a small portion in the center of the image, where it is

surrounded by various Rabbinical commentary. A semantic
structural layer could describe the location of these various
commentaries. The scholar is instructed to read each commentary
as if each were the only one on the page [Holt84]. This can be
facilitated in the multivalent architecture with a general behavior
that examines the structural layer and erases rdl commenl.aries but
the selected one. This contrasts with an annotation system that
simply attaches annotations to a point in the document; in these
systems one would need to annotate each region separately for each
distinct use of that region.

The multivalent specialization described above can be
summarized as an annotations system in a networked environment

with an active client. One could leverage this work in the
development of a live computer-mediated collaboration system.
The input and output channels of content would need to be made
live and aware of participants in a meeting session, but there

already exists a basic network awareness and document

manipulation capability for more than a shared whitebowd facility.

3. High-1evel Multivalent Architecture

3.1 Composable Behaviors

The behavior corresponding to a semantic layer has three kinds
of components: the data or information content of the layer,
functional interfaces for its own use and the use of other behaviors,
and one or more user-level interfaces. This is diagramed in Figure
4 below.

-7—————=

J
page image

\
\

\ ~ region <=> char ,

user
outline area

program
point <=> char

range <=> region

data

\ /

semantic layers behavior

Figure 4: At left, the content of a scanned document
conceptualized as semantic layers of information.
At right, the programmatic or-behavioral implementation
of a layer (highly abbreviated).

Behaviors resemble classes in object-oriented programming
languages, encapsulating each semantic layer as a set of methods

SEASONAL Pf?EClPj~J4,T10N ~N PERCENT OF AVERAGg TO OATE

OC’’NWH? 1, 1989 TO MARCH 31, 1990

(_--—---,.y,.
u ,e:-,,,...

,J’w- - —------mm

~ L$K2%I:
w

-...:...,.=,.:,.4,.,,.,>.:. ~.+.. >.:, .,,.:=*... +, ~ ,k,,f :., ,.,,.,, L... -..=>

{~.. I:J..........wfl=t.=>!...=....>...f..+=..w...........,.,..:.:,,
“..’”$: ““”’““’”. ‘-: ---. -.,=.:..v.:..-::::-x3;;:;.';;:2~''''&#$YHlfiltiH%':w'fi!:i!:*?:E:j:3:fil:':i::I::&{:“’’’’’’’’’’’’..’’’....’.’’’” “, ‘“-”--- ...~$ I in the map region, for NC, SB/:,:.................... .,..,.,.......................,:,.,..,.:...{!.y;;=.x ;MA;%~ ; ~;*.i==..&.&.”.*, “w“ _ * . _ ,~,i~;=<=~ ;~~x: ;:,~A /x*..x,.. ,,,,

r

.—.—.-< ;
~~ PRECIPIT.4T10~

and NL. Unfortunately, the OCR

.............................. boxes. Also note the use of
: ~;::g:;::::;r(rii:~
; H: the quality or stare of btig precipitate: hastiess
,! g: ~ act, process, Ortistmce of precip afi~ esp: this proce.s S

:; jof f o-g a precipitate
j ~: s ometig precipitated as a a deposit on the earth of hsil,

1

,..

:: $&t, rein, sleet, or snow; also: the quantity of water deposited
., .;

q
.: %: precipitate.: i

a networked document
service in retrieving the
definition of “precipitation”.

103

that operate on private data. (Indeed, they are implemented as such
a set of distinguished classes.) That is, data in a behavior is not
directly accessible by other behaviors, which are therefore forced to
operate at a higher level than bit-tweaking a byte stream, which is a
volatile format. Instead, behaviors communicate through program-
level interfaces.

Consider the multivalent document depicted in the diagram
above as a concrete example. This document consists, in part, of a
scanned page image with geometrically positioned OCR. The
character layer stores the mapping between character positions in

the text stream and their location on the image. These locations may
be stored directly as bounding boxes, or they may be given as
character origins along with a single global pointer to the
corresponding font metrics from which the bounding boxes may be
calculated. The exact method is hidden to other behaviors, since all
access is provided through higher-level function interfaces. The
select and paste behavior needs to map a mouse click to a character
position, and take it and subsequent mouse drags and highlight the
intervening characters. It does this by taking the two positions given

by the initial mouse click and the current mouse position and
mapping these to character positions in the text stream; these text
positions are then transformed into the region which is drawn on the
image. Notice that this region is not usually the rectangular region
whose corners are the two points given by the mouse, as it obeys
line houndaries; therefore, it is useful to utilize a behavior that is

intimately familiar with the data.

As described later, a variety of behaviors may be active at any

point in time, on various regions of the document. To aid the user in
determining what is active where, most behaviors can outline its
area of control as one, and perhaps its only, user-level interface.

Not rdl behaviors have all three components. Some behaviors are
data-centric, serving primarily as information repositories, with

Servers

Client

MAIN

F+1 data

database F2 data

database

enough program-level interfaces to provide access to the data.
Other behaviors are program or functionality-centric. For instance,
a general searching behavior may not store any data in itself, except
perhaps a list of “stop words” that should be ignored during the
search. The searching function calls upon other behaviors to
provide the text to search. At the user-level, it may have the ability
to present a simple type-in box for the search term, or it may rely
solely on other behaviors to invoke it. Still other behaviors
primarily provide a user interface to functionality and content
available elsewhere. Most customization by the average user will
take sophisticated functionality developed by experts and mold the
interaction with them to personal taste.

3.2 Behaviors in Operation

Often the semantic layers of a multivalent document are
geographically dispersed on various repositories. For example,
perhaps the page images of the U.S. Constitution maybe stored in
the Library of Congress server, the OCR derived locally, the
Japanese language translation maintained in Kyoto, and a line-by-
line analysis pointing out the influence of the French Revolution
exhibited as a technology demonstration at the new library complex
in Paris.

The more cooperative servers are fronted by a database that can
respond to queries by “name” for a specific piece of information, as

opposed to a URI that maps more or less directly into a file system,
and for entities matching a description of its attributes, like
“semantic layers associated with document 28329” or “behaviors

that can search Unicode”. As described later, though, no particular
cooperation from a server is required beyond delivering the raw
data.

The user controls a client that can communicate with various
servers. In the scenario diagramed on the previous page, the user

LOCAL

FF3 data 4 data

database database

doc query

typedesc[%:lzx%esc

result’

XYZZY =doc
bhvr-A

behavior support

user interaction

4

Figure 5: In response to view a given conceptual document, the client queries relevant servers,
loading content and functional behavior essential to operation as well as concise descriptions
of the ~nformation available at that server.

104

has requested the conceptual document named “XY22ZY”. The

query first goes to a “handle server” (similar to that described in

[Kabn94]) that takes the name and returns a list of servers that have
relevant information, The client queries this list of servers for the

essentird behaviors for mini mat interaction with the clocument.
Other behaviors are loaded as needed; this on demand loading
conserves network baudwidth, which is important considering that
a multivalent decomposition is most appropriate for complex
documents with a great deal of content. Typically the main
components of the document are fetched from a remote source. In
Figure 6, server number one (’MAIN’) holds the page image of the
document and ‘bhvr-A’, which has been deemed essential. The user
does not have permission to use server two, This may be a
commercial supplier of commentaries, with whom the user does not

have an account. Server three returns nothing immediately. In this
case the handle server may have out-of-date information but more
typically the server does not have any essentiat behaviors. The last
server (“LOCAL”) returns two behaviors. They may be the user’s
personal annotations on the page, or they may be wrappers that

automatically invoke other behaviors, in effect locally declaring
those remote behaviors as essential.

In’ all cases the server returns a series of “type descriptors”, that
is, concise characterizations of the behaviors at that server. This
information is used in constructing the type graph.

3.3 The ‘&pe Graph

All servers for which the client has access permission return a

“type descriptor”. Each layer and behavior is typed, rmd the type
graph is a construction of the relationships among pieces. When a
behavior needs a particular information layer or action, if. consults

the type graph for an object that can satisfy it. If the behavior is not
available locally (and not cached), it is fetched at this time over the
network. The type graph is key to managing interactions among
behaviors. Because the type graph is locally managed, it can be
massaged and rearranged. One such use of the type graph is to
override a behavior or piece of a behavior, say from the ofticiat
repository for a particular document, with a locat customization.

Another use of the type graph is to introduce new technology in
a first class way into documents that were initially prepared before

its development or in ignorance of it, but at any rate without special

accommodations made for it, How the type graph facilitates
seamless integration of unanticipated behaviors is illustrated by the

TileBars [Hear94] searching visualization method. Briefly, in a
TileBars interface, the user enters search words for multiple term
sets. For instance Figure 7 illustrates the result for one document of
a search for two term sets, with term set one comprising “flood fire

drought” and term set two, “damage insurance”. A separate search
is performed for each term set. The documents to be searched must
be segmented, or tiled; a simple tiling may take each page as a tile,
while a more sophisticated one would segment along lexically
coherent paragraph units. A TileBar is proportional in length to the
length of a document with one row per term set, and greater
concentrations of hits within a tile square are represented by darker
colors. As diagramed in Figure 7, this representation displays the

P ; term set 1: flood fire drought

: term set 2:damage insurance.. --—.. . .

Figure 7: A TileBar. The length of the bar is proportional
to the length of searched document, and the darkness of
tile squares represents the concentration of hits in that
area of the document. X’s indicates elided pages; the
rightmost two tiles, with heavy mention of term set one
and passing reference to term set two, is page 147.

pattern of hits within a document. Moreover, one can compare the
patterns for different term sets to quickly see where each set is
strongly mentioned or perhaps where one set is strongly mentioned
but where there is only passing reference to the other. (A TileBars
interface to the Berkeley’s document collection is available at http:/
/elib.cs.berkeley. edu/tilebars.html.)

LOCAL

Client

data

Figure 6: To create a TileBar visualization for a search on a document created before the invention of
this technology, the type graph first calculates a TextTiling segmentation of the document on the fly.

105

Initially in Figure 6 on the previous page, the user is studying a
page from the document in his client, the client has a reference to
“llleBars” in its type graph, and the code for TileBars resides on the
local server, Now the user requests a TileBars search. To construct
this search visurdization, the TlleBars code needs to learn the

locations of the matches in the document and the document tile to
which that position corresponds. The maintainers of the authorized
digital document may not have provided a text tiling, but the type

graph reports that one can be calculated on the fly with TextTile
code on the local server. After it is dynamically loaded, the code
calls upon a behavior that can supply the characters of the
document, which are segmented into tiles; these results are reported
to the TileBars and may be cached locally. Likewise a standard
search utility requests the characters and reports its results to
‘llleBam. Armed with the information it needs, TileBars user-level
code calls upon standard page drawing utilities to build the
visualization. The TileBars user-level code actively manages

interaction with the bars so that it can respond to a mouse click in a

tile by directly displaying the corresponding page.

Given the preceding exposition of the Multivalent Documents
framework, we can appreciate the name. The Merriam-Webster
Collegiate Dictionary defines “valence” as the “relative capacity to

unite, react, or interact”, This new model digital documents is
called “multivalent” in recognition of the fact that layers and
behaviors, united through the type graph, interact with the user as a
single coherent document similarly to the way atoms bond to form
compounds with new properties. But whereas atoms share only
their outermost electrons, in the multivalent document model every
piece has the potential to react with every other.

4. Issues

4.1 Misalignment of Layers

The intimately related but decoupled nature of multivalent
documents introduces a concern: a change to document could
misalign other layers. Although difficult to fully combat in the most
general case, an array of strategies can mitigate the practical impact
of this possibility. In some cases,a layer of content doesnot change:
chances are that the PostScript of a Berkeley technical report from
1988 will never be updated. In the case of a scanned page of text,
its structure and the textual transcription, changes in the scanned
page can be fully propagated through to the others by completely
recomputing them. For other cases,the layer can be versioned at the
server.Attachments to that layer also record its version number, and
clients can then either request the specific version, or the new
version along with a list of changes from the requested version so
that the layers can be realigned. An ad hoc association between
layers on volatile and uncooperative non-versioning servers can
record context in order to increase chances reorienting itself after a
mutation. Finally, some layers are unaffected by changes to an
associatedlayer. Anything referring to a structural unit is related on
an abstract level, and when the geometric location of another unit
changes, the relationship on tbe symbolic level is undisturbed-in
fact it has the desirable property that it is transparently updated to
operate properly with the new information.

4.2 User Interface Coherence

Another problem is how to present a comprehensible user
interface in the face of competing behaviors from varied sources. In

a sense, learning the space of interaction with a new document
specialization is much the same as learning a new application
program, and the same techniques used in graphical user interfaces
could be applied. That is, functionality common to most multivalent
documents, searching perhaps, would be standardized, and other

functions could be placed into menus of commands. Behaviors that
introduce interaction modes would first be required to register the

user interaction gestures in which they are interested, and only
modes with disjoint sets of gestures would be allowed to coexist
enabling one automatically disables conflicting behaviors.

Alternatively, a Toolglass and Magic Lens [Bier93] style of
interaction would seem to complement a multivalent document

approach perfectly. Toolglasses carry collections of Magic Lens
tools, and the user invokes a tool on a document by placing a lens
over the affected area and operating through the lens. Multivalent
documents would provide the content and a set of tools; Toolglasses
could organize them and a Magic Lenses would provide an
excellent interaction paradigm.

5. Related Work

5.1 Compound Documents

A comparison with compound document systems like OpenDoc
[Nels95] and Microsoft’s OLE [Broc95] highlights the distinctive
decomposition of the multivalent approach. In analogy to operating
systems, the relationship between compound documents and
multivalent documents parallels that between processes and
threads. That is to say, compound documents organize multiple
editors in the same document but at a much coarser level of
granularity. In the compound approach, a geometric region of the
document can be devoted to a particular, usually heavyweight,
editor, which can introduce new content and functionality into the
container document. Although OpenDoc allows an editor to
communicate with other editors to access their data and request
actions, both OpenDoc and OLE fundamentally view the document
as a set of very loosely coupled data types spatially arranged.
Content is coupled with functionality and screen real estate, and
each functional unit operatesprimarily with a single, complex data
type. In the multivalent approach, complexity is built up from
simple content and most interesting behaviors operate on multiple
layers of content and with other behaviors.

5.2 Active Documents

Many systems activate the digital page with program script
control, including Active Tioga Documents [Terr90], Embedded
Buttons [Bier91] and Computational E-mail [Bore92] to list but a
few. In general these systems connect a script to a specific region of
the document; in these regions the document is active, and
elsewhere the document retains its ordinary properties. In the
multivalent approach, active regions vary according to what
behaviors are active, and the content of that region varies according
to what semantic layers are available.

Others systems, such as Henry [Silv94] and Firefly [Buch92],
coordinate external viewers or editors through narrow
interapplication interfaces to induce on the heterogeneous content
composite hyperlinks and temporal behavior. In the multivalent
approach, document behavior is programmed in the native object
system, but access to advanced tools is maintained Dedicated,
sophkticated analyzers and editors can be used at document
preparation time to compute or compose information, and the
results are stored for manipulation at runtime by less heavyweight
code.

5.3 Multiple Representations

Many multivalent documents use multiple representations in the
service of one or a few presentations. This inverts the Smalltalk
model-view-controller paradigm [Kras88] which maintains a single
shared model in support of multiple views.

106

RightPages [Stor92] models scanned journal article pages “as
three planes of information: the image, OCR text, and page layout”.
As well, it maintains the representations distinctly (on disk) and as
a (C++) object internally. RightPages is an example of a multivalent
perspective in the form of a custom system for a fixed and small
number of layers.

Starting with paper documents and operating on scanned

images, HyperFacs [Myka95] automatically analyzes document
and generates hyperlinks, which can traversed with the

accompanying browser. HyperFacs considers the problem of
scanned document analysis, which the multivalent work does not,
and models a document as a set of layers, but limits the application

of the model to a fixed and small number of layers, for scanned
pages only.

In order to edit scanned images of text, Image Emacs [Bag194]
constructs on the fly a map of connected components that roughly
corresponds to characters—sidestepping the time and ccjmplexity
of optical character recognition-and operates through this layer in
reformatting “characters” as requested by editing commands.
Multivalent documents share with Image Emacs the characteristic

that both manipulate the document through layers c)f partial
information, without demanding the “native” or source
representation. Although a multivalent behavior could also identify

the connected components on the fly also, its bias is toward caching
computationally intensive analysis for use by portable lightweight
code.

5.4 Annotations

Amotation systems maintain a distinction between a “base”
document and the additional annotation material, a distinction that
is generalized in a multivalent document. It is useful to be able to
store annotations separately from the base document for several
reasons: the source of the document may not be mutable (e.g., it

comes from a read-only server or a CD-ROM), the data format may
not be amenable to storing annotation information (a digitized

sound clip meant to be streamed as raw data through a speaker
driver may not have accommodations for annotations,l, and it
should be possible to amotate shared documents without viewing
annotations made by others. TkMan [Phe194], a graphical,

hypertext browser for UNIX manual pages, allows the user to mark
regions as if with a yellow highlighter marker. Highlighting
information is stored in a user’s personal database and merged with
manual pages as they are shown; when a manual page chimges, as
determined from its file modification date, the user is asked whether
or not to throw out the highlights wholesale, but no attempt is made
to adjust the highlights to the modified document. Adobe’s Acrobat
[Walt94] supports textual attachments tied to a geometric position

on the page, and annotations from several users can be combined
into a composite page, but no attempt is made to adjust to a
modified base document. More advanced annotation systems like
CoNote [Davi] and CornMentor [Rosc95] tie textual annotations to
particular locations in the text stream, and compose annotations
from multiple users; the latter system is robust against changes to
the original document. Because of the historic lack of
programmability of WWW clients, these last two systems compose
the text and image streams at the server.

6. Implementation

Although Mosaic [Andr93] and Netscape [Nets94] are sufficient
for simple viewing of simple media like images and text, full
multivalent interaction requires a browser that can execute the
program-objects. We have chosen Sun’s C++-like Java language
[Gos195]. Additionally, Java has the important properties of being
platform independent, secure, and dynamically Ioadable. The basic

document model of Java’s related HotJava WWW browser mimics
a compound document in that rectangular regions of the document
are controlled by dynamical] y-loaded program code. We expand
this region to control the entire document (interaction with HTML
is an area for future research). All document content and program
code is stored in the object-relational database Illustra, the
commercial version of Postgres [Ston91].

We are applying the multivalent document paradigm to source
materials important to the University of California, Berkeley’s
Digital Library Project, initially to California Department of Water
Resources technical reports. These reports consist of scanned page
images that are analyzed for structure, characters transcription, and

tables. As more content, such as maps and mathematics can be
extracted intelligently, it will be added as additional layers.

Whh the goal of making the digitized collection widely
available, we deliver materials over the World Wide Web as much
as possible. Section 2.1, which includes Figures 1, 2, and 3,
describes functionality currently available in a prototype

implementation. This image-centric functionality includes: OCR
select and paste, select and paste of alternative text, searching,
hyperlinks, networked definitions, and table sorting. We have also
implemented TUeBars, although not yet in multivalent form.

In the future, the Project’s rich collection of geographic

materials will take advantage of the multivalent framework
articulated above in the flexible delivery over the network of
functionrdity found in dedicated geographic information systems
(GIS).

The other current focus of research is a distributed annotations
system. Although no different from other behaviors at an abstract
level, an annotations system needs a friendly user interface for such
common annotation styles as adding a textual comment or
hyperlink, graphically embellishing an image, and eliding a region

of content. One possibility for an advanced annotation type is a
rules system that the user could program to invoke a program

behavior (as a black box) in response to patterns identified in
document content.

7. Summary

We have described a new model for digital documents called
multivalent documents. It takes a fine-grained, object-oriented
perspective on digital documents that is well suited to a networked
world of rapidly evolving document technology. This paradigm
views digital documents, especially complex ones with varied
content and styles of interaction, as comprising homogeneous
layers of semantic content. Content is activated by program
behaviors that are dynamically loaded from geographically

distributed locations. Behaviors specialize interaction for classes of
documents, and unify semantic layers to present the user with a
single concepturd document. Both content and functionalist y can be
augmented at a later time in a way that places new material at equal
status with existing material. Although a custom system could be
written for any given document niche, a multivalent framework
leverages work done for other multivalent documents. A
multivalent perspective is useful for a wide variety of complex
documents. We believe that a multivalent document approach to
complex digital documents enables new, sophisticated functionality
and content for complex digital documents.

Acknowledgments

Gary Kopec contributed to the development of many of these
ideas. He is also responsible for the networked XDOC converter.
Ginger Ogle implemented the server side of the TileBars search.

107

8. References

[Andr93] Marc Andreessen. NCSA Mosaic technical summary,
May 1993.

[Bag194] Steven C. Bagley and Gary E. Kopec. Editing images of
text. Communications of the Association for Computing
Machinery, pages 63–72, December 1994.

[Bern92] T.J. Berners-Lee, R. Cailliau, J-F Groff, and
B. Pollermrmn. World-Wide Web: The information
universe. In Electronic Networking: Research,
Applications and Policy, volume 2, pages 52–58.

Meckler Publishing, Westport, CT, USA, 1992.

[Bier91] Eric A. Bier. EmbeddedButtons: Documents as user

interfaces. In Proceedings of the ACM Symposium on
User Inte#ace Software and Technology, pages 45-53,
November 1991.

[Bier93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton,

and Tony D. DeRose. Toolglass and Magic Lenses: The
see-through interface. In Proceedings of SIGGRAPH ’93,
pages 73-80, August 1993.

[Bore92] Nathaniel S. Borenstein. Computational mail as network
infrastructure for computer-supported cooperative work.
In Proceedings of Computer Supported Cooperative

Work (CSCW), pages 67-74, November 1992.

[Broc95] Kraig Brockschmidt. Inside OLE 2. Microsoft Press,

Redmond, WA, 1995.

[Brow95] P. Brown and M. Stonebraker. Big sun A system for the

management of earth science data. In Proceedings of the
20th International Conference on Very Lurge Databases,
September 1995.

[Buch92] M. Cecelia Buchanan and Polle T. Zellweger. Specifying
temporal behavior in hypermedia documents. In
Proceedings of the ACM Conference on Hypertext
(ECHT ‘92), pages 262-271, November 30-December 4
1992.

[Davi] Jim Davis. CoNote. http:/ldri.comell.ednlpub/davis/

annotation. html.

[Gos195] James Gosling and Henry McGilton. The Java language

environmenfi A whhe paper, 1995.

[Hear94] Marti A. Hearst. Context and structure in automated fnll-

text information access. Technical Report UCB/CSD 94-
836, University of Crdifomia, Berkeley, 1994.

[Holt84] Barry W. Hokz, Ed. Back to the Sources: Reading the
Classic Jewish Texts. Summit Books, New York, 1984.

[Kahn94] Robert Kahn and Robert Wilensky. Locating electronic
library services and objects: A frame of reference for the
cs-tr project. http://WWW.CNRLReston.VA.US/homeJ
cstdlmndle-intro. html, February 1994.

[Kras88] Glenn E. Krasnet and Stephen T. Pope. A cookbook for
using the model-view-controller user interface paradigm
in Smalltalk-80. Journal of Object-Oriented
Programming, pages 26-49, AugnstlSeptember 1988.

[Myka951 Andreas Myka and Ulrich Guntzer. HyperFacs - building
and using a digitized paper library. SIGLINK, (2),
September 1995.

[Nels95] Chris Nelson. OpenDoc and its architecture. The X
Resource, 1(13):107–126, 1995.

[Nets94] Netscape Communications Corporation. Netscape.

Commercial Software, 1994.
[Phe194] Thomas A. Phelps. TkMan: A man born again. The X

Resource, 1(10):33-46, 1994.

[Rosc95] Martin Roscheisen, Christian Mogensen, and Terry
Winograd. Interaction design for shared World-Wide
Web amotations. In Proceedings of the Conference on

Human Factors in Computing Systems (CHI’ 95). The
Association for Computing Machinery, May 1995.

[Silv94] Mario J. Silva. Active documentation for VLSI design.
Technical Report UCB/CSD 94-843, University of
California, Berkeley, 1994.

[Ston91] M. Stonebraker and G. Kernnitz. The postgres next-
generation data base system. Communications of the
Association for Computing Machinery, October 1991.

[Stor92] Guy A. Story, Lawrence O’German, David Fox,
Louise Levy Schaper, and H.V. Jagadish. The RightPages
image-based electronic libra~ for alerting and browsing.
IEEE Computer, pages 17–26, September 1992.

[Terr90] Douglas B. Terry and Donald G. Baker. Active Tioga
documents. Technical Report CSL-90-6, Xerox
Corporation, Palo Alto Research Center, June 1990.

[Walt94] Mark Walter. Acrobat 2.0: Adobe moves up market,
beyond ad hoc document delivery. Seybold Report on
Desktop Publishing, 9(1):3-10, 1994.

[Wile95] Robert Wilensky. UC Berkeley’s digital library project.
Communications of the Association for Computing
Machinery, 38(4):60, April 1995.

[Wile96] Robert Wilensky. Toward work-centered digital
information services. IEEE Computer Special Issue on
Digital Libraries, May 1996.

108

