
The Multivalent Browser: A Platform for New Ideas
Thomas A. Phelps and Robert Wilensky

University of California, Berkeley
phelps@cs.berkeley.edu, wilensky@cs.berkeley.edu

Web site: http://www.cs.berkeley.edu/~phelps/Multivalent/

ABSTRACT
The Multivalent Browser is built on an architecture that separates
functionality from concrete document format. Almost all
functionality is made available via relatively small modules of
code called behaviors that programmers can write to extend the
core system. Behaviors can be as significant and powerful as
parser-renderers for scanned paper, HTML, or TeX DVI; as fine-
grained as hyperlinks, cookies, and the disabling of menu items;
and as innovative or uncommon as in situ annotations, "lenses",
collapsible outline displays, new GUI widgets, and Robust
Hyperlink support. Behaviors can be combined in arbitrary groups
for each individual document, in effect spontaneously creating a
custom browser for every one. Common aspects of document
functionality can be shared, so that, for example, the same
behavior that handles multipage support for scanned paper
documents also provides such support for DVI and PDF;
similarly, the behaviors that support fine-grain annotation of
HTML also support identical annotation on scanned paper, UNIX
manual pages, DVI, and PDF.

We have designed and implemented this architecture, and
implemented behaviors that support all of the above functionality
and more. Here we describe the architecture that allows such
power and fine-grained access, yet composes disparate behaviors
and resolves their mutual conflicts.

Keywords
digital document architecture annotation scanned paper
Multivalent behavior

Lexical signature
common lucene openeddocument decyphered multifont decypher
xinclude annotatable carry

1 INTRODUCTION
Documents are idiosyncratic. Yet modern document formats are
so complex (PDF, Microsoft Word, QuickTime) that picking a
format is often tantamount to choosing a browser/editor/viewer
with its packaged bundle of features and limitations. While most
such systems are extensible, it is rare that experimenters can
accomplish something surprising — in a web browser, everything
reduces to some permutation of HTML. The enormous effort

required to write a competitive viewer, even for an open standard
such as HTML, makes it difficult for researchers to implement
radically new ideas and more dangerously starts to restrict their
thinking. End users have to hope that outstandingly useful ideas
will be recognized by the large companies that control the
viewers, and that these ideas eventually propagate across their
many digital document systems: web browsing, word processing,
PDF/PostScript viewer, email, and so on.

It is a primary goal of the Multivalent project to provide inventors
with a system of sufficient power and fine-grained control that
they find it an inviting platform for working out new ideas.
Another goal, equally important, is to enable distribution of new
ideas by not requiring source code changes to the core and by
coordinating possibly conflicting behaviors from diverse parties.

To this end, we have developed an architecture with the following
key features:

ÿ� a document treecore data structure sufficiently flexible to
support scanned paper, HTML, UNIX manual pages, TeX
DVI, PDF, and potentially any other concrete digital
document format — as well as the system's graphical user
interface widgets. Cross format support is crucial, for most of
us regularly deal with many different document formats,
such as HTML, PDF, Microsoft Word, PowerPoint, email,
DVI, and so on, and any work on a system that supports just
one neglects the other 75%.

ÿ a well defined extension mechanism calledbehaviors, which
can implement functionality as powerful as a new document
format or as fine-grained as disabling menu items, all without
modification of or special case support from the core system

ÿ a behavior management scheme calledhub documents, which
list behaviors applicable to the system as a whole, various
document genres, or specific documents, and whose
manifestation in effect gives every document a custom
browser

ÿ a framework for open participation by behaviors in high-
performance low-level communication protocols, which
address all aspects of what we term the fundamental
document lifecycle: restore from disk/network, build data
structure, format document tree, paint document tree, process
keyboard and mouse events. Conformance to protocols
distinguishes the behavior from other object-oriented classes.
To a remarkable degree this conformances suffices to
compose behaviors without conflict.

ÿ a framework forhigh-level semantic eventsso that logical
activities of the document are open to participation by
arbitrary behaviors, same as for low-level events

ÿ a set of ad hoc communication mechanisms for highly
specialized needs not addressed above

The architecture itself should appear simple, general: embodying
the best practices of decades of research in digital documents with
a clean implementation, but not introducing anything unproven.
Indeed, a guiding principle is to condemn special cases, for if
some feature requires special support from the core of the system
and cannot beaccomplished within the general architecture, then
that is a sure sign that the architecture would fail to embrace some
future new idea.

What's new is the extreme extent to which simple ideas are
stressed, and the versatility of the gestalt. Results can be
surprising. For example, on top of an familiar structural document
tree with no special accommodation in the core, one can introduce
lenses [2] — a generalization of the magnifying lens from paint
programs, that can arbitrarily transform its content — and
furthermore manage to compose the effects of overlapped lenses.

We argue for our architecture with a fully functional browser built
according to its principles, which is described in the next section.
The subsequent section documents the architecture, using features
from the browser to show how simple, general architectural
constructs can be exploited to varied, useful, and sometimes
surprising ends. Not infrequently the architecture empowers
novel, practical features not found anywhere else.

2 THE MULTIVALENT BROWSER
The screen dump below shows the running Multivalent Browser, a
700KB Java application. It happens to display an HTML page, but
scanned paper, UNIX manual pages, TeX DVI, and PDF are also
natively supported.

Various annotations have been made. The arrow from
"Oklahoma" to "Microsoft" is a "move text" annotation; it is
executable in that clicking on the source text will delete the
underlined source text and reinsert it at the endpoint of the arrow.
A highlight can be seen at the bottom of the page on "desktop
telephone"; its color can be changed by alt-clicking on it and
choosing a color from a pop-up menu. The floating note is in fact
an embedded document, so it can be annotated itself. A short text
string, seen at the bottom of the page and on the note, affects
formatting of the document, opening up space between lines for
the message. Annotations are robustly anchored to the page so
that if the source of the page changes but the anchor points
remain, they will still reattach correctly [15]. Annotations work
equally well across the document format listed above.

Two lenses are active. The Magnify lens covers text, image, and
part of the note. The Decypher lens, set to its Rot-13 setting,
covers other text. Where Magnify and Decypher overlap, we
obtain magnified decyphered text.

As a test of the architecture, all user-level features have been
implemented as behaviors, with no privileges over those accorded
to third party extensions. For example, the following behaviors
and tree node types are some of the more than 150 packaged with
the base system:

ÿ Media adaptors: scanned paper (two kinds: XDOC and
PDA), HTML 3.2 with most of CSS1, PDF 1.3, UNIX
manual pages (with volume listings), TeX DVI, ASCII, Zip
files (with extraction), local directories.

ÿ Annotations: highlight, hyperlink, floating note, short
comment, bold/italic/underline/..., font face, font size,
foreground/background color. Executable Annotations: move
text, replace with, bold/italic/ underline/..., delete, uppercase/
lowercase/ capitalize.

ÿ Lenses: magnify, show OCR/image, decypher (rot-13, Pig
Latin, ...), plain view, ruler, bounding boxes.

ÿ Tools: table sorting, speed reading, send selection to a web
server (as for dictionary definition or language translation),
telephone touch tone of selection, scrollbar search result
visualization, slide show, and a novel focus+context
visualization called Notemarks [14].

ÿ Multivalent-native GUI widgets: button, checkbutton,
radiobutton, menu, scrollbar, single-line type-in box, multi-
line type-in box, frame, dialog. Widgets compose, so rather
than needing a parallel set of widget buttons to function
within menus as other widget sets do, the standard button
types can be used. Likewise, menus can be cascaded and
function as both pulldown and popup.

ÿ Debugging: Live document tree data structure display.

The browser, source code, and documentation are available at
http://www.cs.berkeley.edu/~phelps/Multivalent/. It is Open
Source.

3 MULTIVALENT ARCHITECTURE
This section documents the architectural features that enable the
above demonstration. Whereas in the past editors needed to
relentlessly bitblt already drawn portions of the screen (as in Lilac
[3]) and share memory between screen display and document
content (as in Bravo on an Alto [7]), today's machines are fast
enough that the Multivalent architecture can heavily favor
simplicity and flexibility over absolute performance.

3.1 Central Data Structure: The Document
Tree

The central data structure is the document tree. It is the same data
structure commonly found in digital document systems, with the
standard set of navigation and tree management functions (adding,
removing, querying children, and so on). Moreso than most such
data structures, the Multivalent document tree was designed to
remain simple and lightweight, as free as possible of special cases
for efficiency or particular document formats.

Similar to other systems but perhaps with more militancy, the
document tree directly represents thestructureof a document. In
the canonical example of a structured book, the tree root is labeled
"book" and has children labeled "chapter", chapters are divided
into sections, which in turn are divided into subsections, and so
on. This is a straight parse tree for XML, a normalized parse tree
for SGML, and a corrected parse tree for HTML (which adheres
to the DTD, if possible given the errors in the page). For scanned
paper, the representation might be physically based, with the page
divided into regions (of type text or image), with text regions
divided into paragraphs, paragraphs into lines, and lines into
words (to the degree analysis software can discern such
structures).

Internal nodes, which have child nodes, capture structural
hierarchy. The usual root of the tree is an internal node type called
Document , which has a URL, a style sheet, scrollable content,
and holds the list of document-specific behaviors, if any.
Medium-specific qualities of a document format are encapsulated
in leaves: depending on its subtype a leaf can paint an image, a
word from a manual page, or a scanned paper word (clipped
image). (Presently, each word of text is given its own leaf node.
This simplifies linebreaking and aligning words of a line flush to
both margins, and aids hit detection; however, very long
unpaginated documents use a lot of memory.) The division of
document content into medium-independent internal nodes and
medium-dependent leaves allows developers to write behaviors
against an idealized abstract document tree and have the behavior
operate on any concrete document format.

All nodes have the following
properties, as summarized at
right: name (the tag name in
XML), baseline, horizontal
alignment (top/ bottom/
middle/ none), vertical
alignment (left/ right/ center/
none), and float side (left/ right/
none). Nodes carry a list of
"observer" behaviors, which as
described in the sections on
high- and low-level
communications notify those
behaviors of any activity in the
subtree. Two exceptions to the
policy of no special cases are
made for the sake of efficiency,
the formatting dirty bit and the
span summary.

In addition to representing the document's structure, tree nodes
contain physical layout information, namely the bounding box of
their contents. This allows behaviors to easily move between
structural and physical representations. A search behavior could,
say, exploit structure to examine only captions, and then display
the results physically, scrolling and highlighting the hits. Another
behavior could convert from a format expressed in semantic
markup, such as XML, into a physically-based format, such as
PDF.

Thus, in many respects the document tree is quite ordinary. But as
the examples below demonstrate it is powerful, and since
developers can introduce new node types as easily as behaviors,
which is a level of extension seldom found in scripting languages,
this versatility can be expanded.

3.1.1 Example: GUI.
A typical editor's graphical user interface, whether for text or
CAD or other document type, has a menubar, a set of buttons on
various toolbars and palettes, various other controls, and finally a
large "canvas" area for display and direct manipulation of the
document. This canvas is highly specialized, similar to other
widgets only in that it is a rectangle that can be drawn upon.

The Multivalent Browser reverses this relationship. All widgets
are simply specialized nodes, and everything is displayed in a
master document tree— the graphical user interface (GUI) as
well as the content of documents per se — both descending from a
common absolute root node. Some "words" happen to have
specialized behavior: click on some words and they display a
different document (that's a hyperlink), click on other words and
they fire a semantic event (that's a button). Rather than a parallel
set of widget layout functions, the GUI uses the same layout
already developed for documents, such as HTML's table. Because
GUI widgets are ordinary nodes, they are controlled by style
sheets.

We haveimplementedas node types a set of essentials widgets:
button, checkbutton, radiobutton, scrollbar, scrolled pane, menu,
type-in box, and dialog box. For HTML forms, where content and
user interface are mixed, this approach results in an especially
clean representation.

3.1.2 Example: embedded documents.
Since document content and widgets use the same uniform model,
one type can easily embed the other. In other widget toolkits,
button labels and dialog box text is usually displayed by a simple
text layout, probably with an images allowed in fixed places, but
it is limited.

Multivalent widgets can embed full HTML documents (or manual
pages or scanned paper, should that ever prove useful), giving
multifont text with images, even video and annotations. This same
embedding is used in editable notes, which by simple reuse of
existing node types are scrolled, multifont, annotatable. Likewise,
dialog boxes that ask for input are HTML forms, whose values are
processed internally rather than being sent to a server. Preferences
setting will be implemented analogously. Furthermore, all buttons
can be embedded in menus as opposed to requiring a parallel set
of menu-specific versions as in other GUI toolkits. Through
simple node reuse, long menus are scrollable.

3.1.3 Example: visual layers.
Internal nodes control the display of their subtrees. Ordinarily,
nodes simply transform the coordinate space to be relative to
itself. The scrolled pane node further adjusts for the current
settings of vertical and horizontal scrollbars.

Visual layers are implemented simply by adding an internal node
under a document's content root, and all of its children are drawn
on top of document content. Dialog boxes and menus use this
method. The simplest visual layer makes no further coordinate
transformations, leaving its children at absolute locations on the
document. Another type of node maintains its children at a fixed
location on the screen by reversing the scrollbar settings. Portals
and zooming could be implemented similarly.

3.2 Functionality: Behaviors
Whereas many document systems support some form of
extensibility, the Multivalent system pushes this idea to the
extreme. Almost everything that is not a tree node is an extension
called abehavior. Behaviors are Java classes that participate in
the communication protocols detailed in subsequent sections.
Programmatically, this means that behaviors subclass the class
Behavior and override methods corresponding to those
protocols. Some behaviors happen to be packaged with the basic
system, but they have no privileges over third-party behavior
extensions. All user-level functionality is implemented by
behaviors. The extension language is the implementation
language.

Behaviors can be categorized according to primary function,
although a single behavior may participate in several.

Media adaptors
Behaviors that primarily bridge some concrete document
format into the runtime document tree are known as media
adaptors. For example, the UNIX manual page media adaptor
reads roff source, the HTML media adaptor goes to great
pains to correct the files of random bytes found on the Web
into a structurally reasonable tree, and the scanned paper
adaptor builds a document tree hierarchy of region, paragraph,
line, word. In addition to viewing documents, media adaptors
can be used for general purpose access; for example, a full-
text indexer could use media adaptors to decode PDF and DVI

Node Properties

name (tag name in XML)

links to parent and
(internal node only) children

bounding box, baseline

horizontal and
vertical alignment

float side (left/right/none)

observers

Special Cases for Efficiency

formatting dirty bit

span summary

uniformly to and as easily as ASCII and HTML. Once bridged
into the tree, the document of whatever source format enjoys
the array of existing functionality; this contrasts with single-
format viewers, such as the excellent IDVI [6] for TeX DVI,
Ghostscript [5] for PostScript, xpdf [12] for PDF, which must
recapitulate a large and growing amount of standard
functionality.

Structural
Structural behaviors modify protocols over a document
subtree. Such behaviors "register interest" in a particular
subtree, and subsequently each protocol invokes the
behavior's corresponding methods before and after passing
through the subtree rooted at that node. For example, table
sorting rearranges the children of the given parent to achieve
sorted order, clipboard markup generates a representation of
the selected text with markup tags, and one type of search
visualization hooks onto the scrollbar to paint its results on
top of the scrollbar every time it is painted.

Span
This very common behavior type of behavior extends from
some offset within a start leaf linearly through leaf nodes to an
offset within an end leaf. Examples of span type behaviors
include font change, highlight, hyperlink, and copy editor
markup.

Lenses
Lenses, such as Magnify and Decypher, control a geometric
portion of the document (described with a movable, resizable
window). Lenses compose effects where they overlap, so that
magnify plus Show OCR yields magnified OCR, and Show
OCR plus decypher yields decyphered OCR.

Managers
Managers provide specialized coordination among behaviors
beyond that provided by the usual means of communication.
For example, Lens coordination of overlapping lenses is very
specialized, to compose effects when lenses overlap, and yet
its coordinating manager behavior has no special privileges in
the system. When a lens is made, it queries the browser-level
attributes for the lens manager, spontaneously creating one if
it is the first, and registers its existence. During document
painting, the lens manager computes intersections and invokes
the individual lenses.

Writing behaviors ranges in flexibility and difficulty. An
individual behavior may be customizable with attributes in its
hub. The behavior that appears in the popup menu on a word and
sends that word to a dictionary or language translation service
takes as attributes that title to show in the menu and the URL of
the service. Most span types rely on aSpanUI behavior to put
them in a menu (this separates functionality from user interface),
and other spans could be added and their organization in the user
interface rearranged. TheSemanticUI behavior sends an
arbitrary semantic event in response to invoking a menu item or
button on the toolbar. A number of other behaviors are probably
simple variations on existing behaviors. A demonstration "FBI
Redaction" behavior, which blacks out spans of text and
associates a reason code and comment, was written in two hours
by starting with the hyperlink annotation behavior, changing the
blue underline to black foreground and background, and changing
the dialog box to ask for a comment rather than a URL.

Of course, the wholly original ideas can be satisfied only by
writing a new behavior from scratch, but it seems possible to
accomplish interesting things in just a few hundred lines of code.
Media adaptors can reuse node types already created for flowed
and fixed document types, and current media adaptors range from
167 lines for ASCII, 180 for Zip, 238 for directory listing and 260
for Perl's POD among the simple formats, to about 1000 for UNIX
manual pages in the mid-range. At 4000 lines, HTML is the
largest media adaptor, yet this is only 5% as large(!) as the rough
equivalent in Mozilla. Spans are simpler, with most under 100
lines and the most complex (hyperlink) at 250. Lens range from
50 to 100 lines. Other behaviors range from 100 to 400 lines.

3.3 Hubs, which catalog behaviors
In effect, every document is given a custom browser. This set of
behaviors to use is listed in ahub, which is an XML document.
Hubs are loaded by the system when the system starts up and
when individual documents are loaded. The system's built-in hub
is loaded first, then a hub, if any, from the user's home directory,
which can augment or delete behaviors given in the system hub.
By editing the applicable hub, behaviors can be added, removed,
rearranged (to affect their order in the user interface), replaced,
and specialized (by editing attributes). For example, one could
swap the Emacs editing key bindings for the Microsoft Windows
ones, and enjoy Emacs editing commands in everything from
URL type-ins to editable notes to text fields in HTML forms.
Hubs can be compared to style sheets in that, given a document
with some structure, style sheets describe how to display the
document, while hubs describe how one may interact with it.
However, hubs go much farther and control the construction of
the entire application.

Above is an excerpt from a hub. At runtime a hub is converted
into a layer consisting of a list of instantiated behaviors and a list
of non-behavior data subtrees. Attributes in the hub become
attributes in the runtime behaviors and similarly with the data
subtrees. Thus layers can be converted between XML file and
runtime representations with no loss of data. The name of the
layer is given by the root of the XML parse tree. Since hubs are

<?xml version='1.0' ?>
<System title="System default behaviors">

<xinclude:include href="Core.hub" />
<xinclude:include href="Net.hub" />

<MenuBar behavior='multivalent.std.ui.Menubar'

titles='File|Edit|Go|Lens|Style|Anno|CopyEd|View|Help'
/>

<MenuItem Behavior='SemanticUI'
SCRIPT="event newBrowserInstance"
title="New Browser" parent="File" category="File"
TYPE="Button" />

<Events Behavior='multivalent.std.ui.EmacsBindings' />

<MenuItem Behavior='SemanticUI' SCRIPT="event EXIT"
title="Quit" parent="File" category="Quit"

TYPE="Button"
/>

</System>

written in XML, they can include by reference other hubs with
xinclude . Behaviors are identified as such by an attribute
named "behavior"; in the absence of such a tag, that subtree is
added to the list of data subtrees. The name of the behavior can be
given as a fully qualified classnames, such as
multivalent.std.ui.Menubar , or asHyperlink ,
in which case it is mapped to a full classname via a table; the map
enables all instances of some popular behavior type to be
conveniently updated to a new, more powerful implementation of
that same class of functionality. Hierarchy within a behavior tag is
left to that behavior to interpret. It can be content, as in Post-it
notes where the text of the note is stored inline; or it can be nested
behaviors, as in span annotations which nest a pair of Location
behaviors to robustly anchor their endpoints to survive edits to the
document.

Since many documents share functionality and other documents
have no associated hub, the following types hubs are cascaded to
produce the full set of behaviors active on a given document.

System hub
The system hub lists behaviors applicable to all documents. It
includes the basic parts of the File, Edit and Help menus;
searching and search visualization; document popup menu and
entries for word lookup in dictionary, language translation and
other sites; key bindings; and others.

Genre hubs
A genre hub can be based essentially on a document's MIME
type, but more specific categories can be made, as for instance
"UNIX manual page" is a genre type, which is more specific
that its MIME type of "roff document". The genre hub for
scanned paper documents includes the "Show OCR" lens, the
control to change the view to OCR text-only or image-only,
and the heuristic link identification behavior. Hubs can
contain by reference other hub documents, and the Scansoft
XDOC OCR format includes this general OCR hub that is
shared with the Caere PDA OCR format.

Document-specific hubs
Finally, a document-specific hub holds behaviors that apply to
that document only. Few documents are so special that
behaviors are written just for them, but document-specific
hubs are used to hold annotations, for which the behavior code
is common, but the application instances to the particular
document as specified in attributes is unique.

The separation of document function in hubs and document data
in existing concrete formats gives a number of advantages. Simple
document formats can be enlivened with modern ideas (hyperlinks
for ASCII), and more modern formats can be enlivened with ideas
that are too new to be included, too specialized or esoteric for a
general use, or simply too complex to be included in a
specification meant to be implemented by a number parties of a
variety of devices. Moreover, since hubs can be stored separately
from content, they can be applied to servers and media that are not
cooperative. For example, one can annotate a scanned page image
on a web site, which itself supports just simple image display.

3.4 Low-level Communication:
Restore, Build, Format, Paint, Events
Protocols

In general, behaviors do not directly invoke one another's methods
as this would lock out changes by other behaviors. That is, closed
communication patterns would lock out behaviors with new ideas
about how the system should operate. Instead, the general
template for all communication is the following:

1. system or behavior initiates or requests some action,

2. all behaviors potentially interested in this action have a
chance to modify or even cancel (or just record or ignore)
the action, and

3. the modified action is executed.

All digital document systems share a fundamental document
lifecycle: the application is loaded, the document is read in and
internal data structures are built for it, the document is formatted,
then it is painted on the screen, at which point the system waits for
the user do something. To open this to arbitrary new behaviors,
the process is reified into sharply segregatedprotocols: restore
behaviors, build document tree, format document tree, paint
document tree, low-level events (such as from the mouse and
keyboard), semantic events (described next section). During the
build protocol, say, all interested behaviors have the opportunity
to build on the document tree data structure, modifying the work
of other behaviors.

The system is aframeworkwhere the system is in charge of the
overall flow of control. Frameworks contrast with systems in
which the developer's program defines the flow of control,
sometimes passing through libraries. For every protocol in the
framework, the system will pass through relevant behaviors,
briefly handing off the flow of control to a behavior to perform all
of its work for that protocol only. Behaviors may not have any
work to perform in a particular protocol, but while in one protocol
it is illegal to work on another protocol.

Most protocols havebefore and after phases: the before phase
of the protocol is executed in its entirety, then the after phase.
With arbitrary behaviors active at any point in the document
lifecycle and with potential dependencies on other behaviors, the
division of protocols into phases helps sequence behaviors. The
rule of thumb is that behaviors that build structures do so in
before, so that all such activity is known to be completed byafter,
which can modify it or cancel it. For example, during build
before, one behavior can load in the main body of a document, so
that it will be available for annotations to hook into during build
after. A behavior can short-circuit frombeforeto after phases thus
bypassing lower priority behaviors, or fromafter to end the
protocol.

As appropriate to their intrinsic nature, protocols are eitherround
robin or tree based. Round robinprotocols flow through the
before phase of all active behaviors from highest priority to
lowest, then the after phase in reverse order. Thus the highest
priority behavior is called first and last, getting the first word and
the last say, as it were. The round robin protocols are Restore,
Build (at the start of which the tree does not exist), Semantic
Events (such as openDocument and
newBrowserInstance), and Save.

Tree-basedprotocols proceed through a depth-first tree walk,
during which tree nodes can also affect control flow. Behaviors
interested in a structural portion of the tree register interest
(programmatically, add themselves as observers) to the node at
the head of the subtree, and during the tree walk thebefore
methods of the observers are called before the node and its
children are traversed, and the after methods of the observers are
called after the node is done. Behaviors can short-circuit from
before to after, thus bypassing that subtree; andafter can short-
circuit to cancel the remainder of the tree walk. The tree-based
protocols are Format, Paint, and Low-level Events.

Below are described the low-level protocols: those performance-
intensive protocols concerning construction and display of the
document, and system input.

3.4.1 Restore
When a behavior instance is created, it is restored, during which it
can perform initialization. Behaviors inherit the attributes from
their hubs, which provides an easy means of end user
customization. The menubar behavior takes the list and order of
its menus from an attribute.

3.4.2 Build
The build protocol iterates through the build before methods of all
behaviors, then the build after of each in reverse order. Media
adaptors execute most of their work during this protocol, reading
a concrete format and building its runtime manifestation as a
document tree. With media adaptors working in the build before
phase, annotations, which are stored separately from documents
and can annotate any document format, attach themselves in the
after phase, at which time the basic document tree is known to
have been constructed.

3.4.3 Format
Formatting is largely left to document format-specific nodes to
carry out. Generally, nodes determine how large they would like
to be (width and height dimensions), and parents set the locations
(x,y) of their children. Formatting occurs during a walk of the
document tree, top down propagating maximum dimension
constraints and property settings from style sheets, then bottom up
propagating requested dimensions to be positioned.

All nodes, whether heavily
medium-dependent leaves
or largely medium-
independent internal nodes,
must respect a core set of
properties during Format
and Paint protocols, the full
set of which is given in the
table at right. Behaviors
rely on a this guaranteed
level of functionality across
media types. For instance,
the selection and the
highlighting annotation rely
on setting the background
of a word to a given color.
Most media types can
simply draw the word over
the colored background,
but scanned paper must
identify the white pixel in
its image and convert it to transparent before drawing the image
of that word.

3.4.3.1 Example: formatting scanned paper images.
Two core properties that must be respected are space above and
below the baseline, which is used to open up space between lines
for short text annotations. For flowed document formats such as
HTML and manual pages, this is simply another variable to
consider during formatting. For scanned paper, repecting this
property requires reformatting a fixed image, pushing areas that
would be overlapped farther down or to the right.

3.4.4 Paint
The Paint protocol renders a formatted data structure to the
screen, printer, or other device. It is very similar to Format in the
management of core properties. Thebeforephase can be used to
draw backgrounds or set graphics transformations, andafter can
draw on top of the corresponding subtree.

All painting is performed under aclipping region, which at largest
is the size of the visible screen. During the tree walk, only nodes
that lie within the clipping region are pursued; thus, when an
internal node lies outside of the clipping region, its entire subtree
is ignored, and the system is able to quickly paint, with just a
small amount of wasted effort, that part of a potentially long
document that is visible on the screen. Lenses operate by setting
the clip to just their bounds, or their intersected bounds, and
repainting the entire document with certain properties set. This
process is so rapid that the entire screen can be repainted in full
continuously during scrolling. This is as opposed to a "bitblt"
which copies that part of the document that remains onscreen but
at a different location; bitblt-based scrolling is problematic in
Multivalent because notes and lenses can be fixed to a point on
the screen and so don't scroll with the rest of the document.

3.4.4.1 Example: Move-To annotation.
As shown in the demonstration of the Multivalent Browser, the
Move-To annotation type draws an arrow from its source span to
its destination point. This arrow must be drawn the document's
coordinate space, which may be scrolled; it should be fast to

Core Format and Paint
Properties

foreground and background
colors

font family, style, size

underline, overstrike

elide

justify

spaceabove/below

horizontal and vertical alignment

float side

margins, padding, border

signals

redraw, since the destination point is interactively chosen; and it
should be efficient so that we can have 1000s of annotations that
draw on a document 100s of pages long, and so only those arrows
that will appear on the screen should be drawn.

The Move-To behavior accomplishes this by using a treenode
function to determine the lowest node in the tree common to both
start and end points, and registers interest on that node. At this
time it computes the coordinates of the start and end points of the
arrow relative to the common node, to be used in any number of
future paintings. Now for all protocols the behavior receives
notification of activity on the node; in this case, after the content
of the subtree has been painted, which is to say in theafter phase,
the behavior draws the arrow using the precomputed coordinates.
Since the lowest common node frequently extends beyond the
visible screen, parts of the arrow are at times painted uselessly,
but the total amount of wasted work is contained within a
relatively small portion of the document. During interactive
setting of the arrow, the behavior quickly unregisters from the last
lowest common node, computes the new node, registers on that,
computes coordinates, and repaints the screen.

3.4.5 Low-level Events
Low-level events, such as keystrokes, mouse clicks, and OS
window activity (close, iconify) are propagated through the tree,
its path winnowed by the event's coordinates if any, where they
can be seized by behaviors that have registered interest in that part
of the tree.

3.4.5.1 Examples: spans, document popup, disabled menu
items.

Span behaviors receive events by virtue of being anchored to
leaves. Hyperlinks of course translate a mouse click into a request
to load a new page. The document popup menu behavior seizes a
button 3-down event, in theafter phase in order to give any other
behavior priority, and then creates the menu according to
behaviors active at the cursor point. The disabling of menu items
is not built into menus or menu items, but is added as a behavior.
A structural behavior registers itself on each disabled menu item
and short-circuits events on that subtree so mouse movement
cannot select that menu item. (It also participates in Paintafter,
graying out the appearance of the menu item by drawing over the
content spaced lines the same color as the background.) This same
method could implement guards for widgets with dangerous
effect: click once to remove the guard, click again to execute.

3.5 High-level Communication: Semantic
Events

The low-level protocols open document manifestation and
interaction with the user. They do not address higher-level logical
or semantic actions, such as opening documents and sorting
tables, but the spirit of the system demands that, no less than low-
level actions, these high-level actions must be open to
modification by any behavior.

As a high level action, semantic events are relatively infrequent
and thus not performance critical. They are sent to all behaviors,
with before and after phases. A semantic event consists of a
message, such asopenDocument , and three fields labeled
argument, in, and out, whose exact content types depend on the
message, though the rule of thumb is that argument corresponds to

the most commonly needed auxiliary data, in holds the sender of
the event, and out collects results from participating behaviors.

Semantic events are most oftensent to request action and to
announce state. Even when a behavior could directly invoke itself,
it is often better to request the action and give other behaviors a
chance to modify or cancel the request. Other semantic events
announce potentially interesting state. Semantic events are most
often acted uponby behaviors to implement a requested action,
to modify the event, or to update state in response to an
annoucement event.

For example, when a document has been loaded, surviving
potential 404 File Not Found's and redirections, the system
announcesopenedDocument (note past tense), and the
forward/backward behavior adds it to history list. The search
behavior announces its results in asearchHits semantic
event, which is caught by the scrollbar visualization behavior.
Media adaptors for HTML, directory listings, and Zip archive
listings all send the table sort behavior, withsortTable as the
message, and node and direction in fields. The table sorting
behavior catches the event, inspects table to determine the data
type of the requested column, sorts, and rearranges the document
tree to reflect the sort order.

3.5.1 Example: TeX DVI.
TeX's DVI is a page description language like PostScript, but very
simple: it has movement commands, registers, font changes,
character drawing, and little else. Moreover, its author froze the
format. Everything from hyperlinks to images to graphics drawing
is implemented by means of "specials", which are embedded
strings that are left to the viewer to interpret. There are probably
hundreds of specials that have been defined, and different viewers
implement different, usually small subsets. Supporting a new
special involves hacking the source code, if the source code is
available, and hoping the viewer's main authoraccepts the
changes.

The Multivalent DVI media adaptor supports specials without
modification of the parser-renderer with the same mechanism as
used in the rest of the system, the behavior. The parser announces
specials as semantic events, passing the special string, and
geometric and logical (document tree) positions in fields.
Behaviors implementing specials listen for the relevant messages,
and have enough information in the fields to accomplish their
work. The HyperTeX hypertext and PageSize specials are
currently supported, and image and color will be.

3.5.2 Example: menu construction.
All behaviors have a chance to contribute to all menus, whether
they drop down from the menu bar or pop up from document
content, hyperlinks, or the selection. Menus are built on demand.
At the moment the menubar behavior needs to build a menu, it
sends a semantic event with message
createWidget/ menu-title , and seeds the out field
with an empty menu. Arbitrary behaviors can add to the menu,
and when the event returns to the menubar, the menubar formats
and paints the resulting menu.

3.6 Ad Hoc Communication
The protocols described above involve all behaviors in ways that
they all understand, even if that understanding results in the
behavior knowingly ignoring a protocol. Protocols satisfy the
communication needs of the great majority of behaviors.

Various ad hoc communication involves smaller groups of
behaviors. The communication is still open so that arbitrary
behaviors can participate, but behaviors must know how to
communicate in a language socially agreed upon by concerned
behaviors outside of core definitions. Out-of-protocol
communication can be made by leaving state in the document tree
(in attributes and global variables), by manager behaviors, and by
defining further protocols. As well, although all behaviors are
presented with semantic events, they typically examine the
message to determine whether the event is interesting to them, and
since messages are simple strings, it's easy for groups of behaviors
to coordinate on a new string, thus in effect spontaneously
creating a new ad hoc communication on top of a well known
transport.

3.6.1 Example: multipage.
Several document formats are paginated, including scanned paper,
DVI, and PDF. Multipage documents share a set of behaviors that
provide GUI controls for navigating pages and save and restore
annotations between individual pages and a single file on disk.

Multipage behaviors define two attributes held in the document
root, PAGECNTthat holds the total number of pages in a
document andPAGEthat holds the current page number. Media
adaptors interpret their specific medium and report the total
number of pages, and during the build protocol they inquire for
the value ofPAGEand construct that page. Page numbers are
given as positive integers; media adaptors may have to map a
more complex numbering scheme, but the page navigation
controls is guaranteed that the current page number plus one gives
the next page.

Simply by referring to a particular behavior in their hub,
multipage document formats can take advantage of per-page
annotations that are saved to a common file. All document
formats can be annotated with an open-ended set of annotation
types, none of which is built in. Neither is the saving and restoring
of annotations built in. An annotation manager behavior waits for
a closedDocument semantic event, at which point it collects
annotations writes them to disk, and restores them on a
subsequentopenedDocument . Multipage documents are
more complicated since it was desirable to save annotations from
all pages in a single file, the better to distribute the set as a unit.
Multipage behaviors have socially defined an extension to
openedDocument /closeDocument for pages; the
multipage controls sendopenedDocumentPage and
closeDocumentPage , and the save/restore annotation
behavior responds to these. The pagewise annotation manager
takes advantage of state in the Layer object, and stores
annotations for pages other than the current page in data trees.
This in turn is a state known by the wipe annotations behavior, so
it can not only clear annotations for the current page as it can for
other documents, but also enables it to wipe all annotations in the
document by clearing the layer's data trees.

4 RELATED WORK
Additional related work is considered in [13].

4.1 Mozilla and Other Open Source Projects
As compared to proprietary web browsers, the Mozilla browser
[9] seems to offer inventors an inviting playground in which to
execute their ideas. As an Open Source project, the browser's
source code is available for arbitrary changes. Likewise, Open
Source viewers can be found for most but probably not all other
document formats. Several researchers have taken this path,
extending NCSA Mosaic [11] to experiment with annotations in
Stanford's ComMentor [16] and advanced style sheets with
Proteus [8], and others have taken advantage of W3C's
experimental browser Amaya [18] for constraint-based style
sheets [1].

But the situation is not ideal. In the first place, retrofitting a
feature into the browser for one document format still neglects all
the other document formats one works with regularly. Moveover,
in the case of Mozilla, the system is enormous: the current version
as this writing (v0.9.1) comprises 3817 C++ files and over 1.6
million lines of code (compared to Multivalent's 287 files and
54,000 lines of code). While it is modularized, there is
nevertheless a significant amount to master before one can work
on the new idea — which was the reason for working with the
system in the first place.

When it comes to the essential point of distribution, Open Source
systems are not necessarily an improvement over closed source.
Open Source proponents claim that one can simply redistribute
the source with changes, and this can be done. In practice,
however, such systems are evolving and one would want to track
new versions, but revising one's changes to match new mainline
source changes is tedious at best. One can contribute the changes
back to the main project developers, but they may not be
accepted, especially if they are of limited applicability or if they
are large and thus hard for the main developers to maintain.

4.2 Document Object Model
The World Wide Web Consortium has defined a Document
Object Model (DOM) [19] for the runtime programmatic
manipulation of XML and HTML document trees. It similar to the
Multivalent document tree in that both have the standard set of
tree definitions, and navigation and manipulation functions. DOM
continues to evolve and the latest "level" (level 3) defines a model
of event propagation, in which "bubble" and "capture" correspond
remarkably closely to before and after phases of the low-level
events protocols.

At least for the foreseeable future, various strengths of the
Multivalent model seem to lie outside of the scope of DOM:

ÿ Behaviors can define new node types, which is crucial for
support of non-HTML documents, such as scanned paper and
PDF. Since GUI widgets are simply node types, behaviors
can cleanly introduce new widgets.

ÿ DOM defines the tree, views, style, events, load and save.
The Multivalent Model covers — at a less sharply defined
detail — the other parts of what it calls the fundamental
document lifecycle: build, format, paint, semantic events.

ÿ DOM is language neutral. In practice, the language is
JavaScript, whose sole virtue is that it is the only way to
script web pages. As a programming language, Java is vastly
better designed.

ÿ JavaScript can be associated with individual pages, whereas
one wants some functions to operate on all pages or all pages
of some genre. One could conceive of running through a
proxy server that spliced arbitrary JavaScript into all pages,
but aside from a decided lack of aesthetic appeal, that’s
awkward and introduces new security risks.

ÿ Since it is difficult to package JavaScript from different sites,
it is not surprising that there is little thought given to
composing the scripts and mediating conflicts, a situation
which Multivalent has addressed with several mechanisms.

5 FUTURE WORK
We plan to finish HTML 3.2 and CSS1 support in the immediate
future. We will integrate the Java Media Framework (JMF) [17]
for QuickTime and Flash support and Netscape's Rhino [10]
JavaScript-in-Java implementation, to complete the Web
browsing aspects of the platform.

We plan to take advantage of media adaptors for manual pages,
PDF, and other document formats to provide access to text for use
in constructing a full-text index, probably implemented by the
search engine Lucene [4].

We eagerly welcome third party developers.

6 ACKNOWLEDGEMENT
This research was supported by the Digital Libraries Initiative
under grant NSF CA98-17353.

7 REFERENCES
[1] Greg Badros, Alan Borning, Kim Marriott, and Peter

Stuckey. "Constraint Cascading Style Sheets for the Web",
Proceedings of the 1999 ACM Symposium on User
Interface Software and Technology.

[2] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton
and Tony D. DeRose. Toolglass and Magic Lenses: The
See-Through Interface.Proceedings of SIGGRAPH '93,
Anaheim, California, pages 73-80.

[3] Kenneth P. Brooks. A Two-view Document Editor with
User-definable Document Structure, Digital Systems
Research Center Technical Report 33, 1988.

[4] Doug Cutting. Lucene, http://www.lucene.com/.

[5] L. Peter Deutsch. Ghostscript,
http://www.cs.wisc.edu/~ghost/.

[6] Garth Dickie. IDVI, http://www.geom.umn.edu/java/idvi.

[7] Michael A. Hiltzik. Dealers of Lightning: Xerox PARC
and the Dawn of the Computer Age, HarperCollins, 1999.

[8] Philip M. Marden, Jr. and Ethan V. Munson. Multiple
Presentations of WWW Documents Using Style Sheets,
Proceedings of NPIV 97, the Workshop on New Paradigms
in Information Visualization and Manipulation, Las Vegas,
November 1997.

[9] Mozilla.org. Mozilla, http://www.mozilla.org/

[10] Mozilla.org. Rhino: JavaScript for Java,
http://www.mozilla.org/rhino/.

[11] National Center for Supercomputing Applications, Mosaic,
http://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/h
elp-about.html

[12] Derek B. Noonburg. xpdf, http://www.foolabs.com/xpdf/

[13] Thomas A. Phelps. "Multivalent Documents: Anytime,
Anywhere, Any Type, Every Way User-Improvable Digital
Documents and Systems", Ph.D. Dissertation (1998).

[14] Thomas A. Phelps and Robert Wilensky. "Multivalent
Annotations", Proceedings of First European Conference
on Research and Advanced Technology for Digital
Libraries (1997).

[15] Thomas A. Phelps and Robert Wilensky. "Robust Intra-
document Locations",Proceedings of the Ninth World
Wide Web Conference, 15-18 May 2000, Amsterdam.

[16] Martin Roscheisen, Christian Mogensen and Terry
Winograd. Beond Browsing: Shared Comments, SOAPs,
Trails, and On-line Communities.Proceedings of the Third
World Wide Web Conference: Technology, Tools and
Applications, April 1995, Darmstadt, Germany.

[17] Sun Microsystems. Java Media Framework,
http://java.sun.com/products/java-media/jmf/.

[18] World Wide Web Consortium (Irene Vatton et alia).
Amaya, http://www.w3.org/Amaya/.

[19] World Wide Web Consortium. Document Object Model,
http://www.w3.org/DOM/.

